I've been working on frequency conversions for a while now. The general idea in a frequency conversion is to keep the same date, but change precision as necessary. A conversion from year to hour will gain precision (keeping defaulted months, days, and hours). A conversion from seconds to months will lose precision. The important thing to remember is the dates must be as similar as possible after the conversion.
The problem with frequency conversions (other than the monotony of the whole endeavor) is the "awkward" dates like business days and weeks. Weeks (in the NumPy DateTime implementation) only occur on Sundays and Business Days will skip any weekends. So what happens when you have a Monday for a conversion to Weeks? Do we go forward to the next Sunday? The nearest Sunday? The previous Sunday? This is an awkward operation, but the user should be able to anticipate the results.
TimeSeries conversions work very simply (and I'm basing some of my conversion routines on theirs): the long value is converted into days, then the days to X frequency conversion routine is run. This leaves the program with a simple calculation to determine the results of the remaining (if any) precisions (hours, minutes, seconds, etc), which isn't very difficult. Luckily, most of the operations are trivial (seconds to milliseconds, seconds to microseconds, seconds to nanoseconds) and haven't been much trouble. The ones to worry about are weeks and business days. Those can be a little bit nasty.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment